

Bericht NISV- Berechnung Swissgrid TR1360 Pradella-Sils

Christophe Doublet

Projektingenieur Freileitungen

16. Mai 2025

Projekt Nr.: | Anlage / Objekt: Swissgrid TR1360 | Bericht Nr.: EE0xxxx

Details zum Dokument

NISV-Berechnung – TR1360 Pradella-Sils

Datei 250516_NISV_TR1360.docx

Titel

Änderungsindex

Revision	Datum	Erstellt	Geprüft	Freigegeben
00	16.05.2025	C. Doublet	R. Szillat	A. Brönnimann
		Christophe Doublet	Signed by: Rafael Szillat	Docusigned by: Akiala Brida la imala la

Verteiler

Name STKZ

Inhaltsverzeichnis

Kontext und gesetzlicher Rahmen	3
Berechnungsannahmen und elektrische Daten 2.1. Vorhaben und NISV	3
 Ergebnisse der 2D Berechnungen Mastbild und Ketten Leiterseile und massgebender Betriebszustand Magnetisches Feld (B-Feld) Elektrisches Feld (E-Feld) 	4 4 7 7 12
4. Ergebnisse der 3D Berechnungen4.1. NIS-Abklärung4.2. Untersuchungsperimeter und Querprofile	13 13 14
5. Schlussfolgerung	30
Referenzen	30

1. Kontext und gesetzlicher Rahmen

Dieser Bericht umfasst die elektromagnetischen Berechnungen für die 380-kV Swissgrid Trasse TR1360 Pradella-Sils zwischen den Tragwerk 1360x127 und Tragwerk 1360x202.

Im Rahmen des Sanierungsprojektes sollen diverse Verstärkungen und/oder Erhöhungen an den Tragwerken angebracht und neue Isolatoren Ketten montiert.

In der Verordnung zum Schutz vor nichtionisierender Strahlung (NISV - Stand am 1. November 2023), die seit dem 1. Februar 2000 in Kraft ist, sind folgende Grenzwerte an Orten mit empfindlicher Nutzung (OMEN) festgelegt:

- Bei bereits bestehenden Anlagen (bestehende Leitungen oder Kabelleitungen): 100µT (Immissionsgrenzwert) für den Effektivwert der magnetischen Flussdichte B.
 Bestehende Leitungen sind jedoch zu sanieren, d.h. ihre Phasenbelegung ist optimal zu konfigurieren, wenn dies nicht schon der Fall ist.
- Nach dem 1. Februar 2000 erstellte Anlagen oder eingezonte Parzellen: 1µT (Anlagengrenzwert).

Die 44km lange TR1360 (Baujahr 1966) besteht aus zwei Leitungsstränge, die heute mit 380-kV betrieben sind. Zwischen Tragwerk 1360x127 und Tragwerk 1360x202 ist die aktuelle Phasenanordnung der Leiterseile NIS-optimiert für parallele Lastflussrichtungen.

Alle in dem vorliegenden Bericht dargestellten Berechnungen wurden mit Hilfe der Software EFC-400 Version 2025 durchgeführt.

2. Berechnungsannahmen und elektrische Daten

2.1. Vorhaben und NISV

Bei diesem Projekt ist zu beachten, dass das Vorhaben aus Sicht der NISV unterschiedlich eingestuft werden kann (alte Anlage, Änderung einer alten Anlage oder neue Anlage).

Vorhaben für die Sanierung von TR1360:

- Diverse Verstärkungen und/oder Erhöhungen von gewissen Tragwerken am selben Standort
- Einsatz von neuen Ketten (Trag-Abspann-Ketten und k\u00fcrzere Tragketten f\u00fcr Tragmasten und neue Abspannketten bei Abspannmasten) → Leiterseilposition erh\u00f6ht oder unver\u00e4ndert.
- ullet Massgebende Betriebszustand unverändert o Lastflussrichtung, Phasenlage, thermischer Grenzstrom bleiben unverändert.

Gemäss Anhang 1, Absatz 12, Ziffer 7, Buchstabe a und b der Verordnung über den Schutz vor nichtionisierender Strahlung gilt das Höherlegen des gleichbleibenden Mastbildes nicht als Änderung einer alten Anlage.

Der geplante Umfang des Vorhabens bewirkt, dass die Leiterseile angehoben werden. Dies hat zur Folge, dass der Schlauch des Magnetfeldes (Isolinien) angehoben wird. Somit ist das vorliegende Projekt gemäss NISV nicht als Änderung einer alten Anlage zu klassifizieren (gemäss Anhang 1, Absatz 12, Ziffer 7).

Die Einhaltung der NISV (SR 814.70) ist für das geplante Vorhaben gemäss den geltenden gesetzlichen Grundlagen erfüllt.

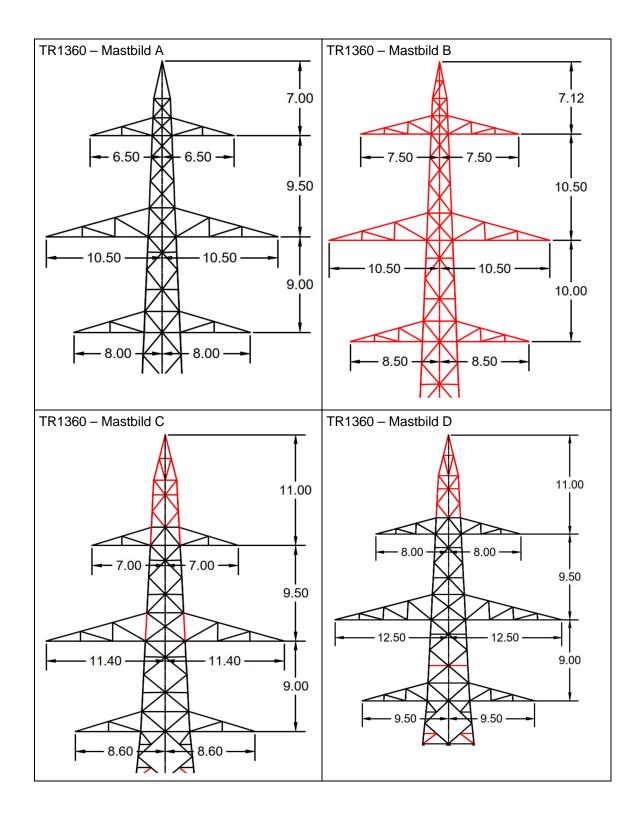
Der Vollständigkeit halber wurden die Untersuchungs- und Legitimationsperimeter auf den Situationsplänen zwischen den Tragwerk 1360x127 und Tragwerk 1360x202 dargestellt.

Die NISV wird beim Vorhaben vollumfänglich eingehalten.

3. Ergebnisse der 2D Berechnungen

Nachfolgend sind die Ergebnisse der 2D NIS-Berechnungen (Magnetfeld und elektrisches Feld) für TR1360 zusammengefasst.

Für die 2D-Berechnung des Magnetfeldes sind die Geometrie der Tragwerke, die Materialeigenschaften der Leiterseile, deren Durchmesser und Material, die Phasenlage und die Lastflussrichtung der beiden elektrischen Systeme zu berücksichtigen.


Die Sicherheitsabstände zur Einhaltung der NISV-Werte für das elektrische Feld (5 kV/m) sind in der Regel etwa gleich gross wie die nach LeV einzuhaltenden Bodenabstände.

3.1. Mastbild und Ketten

Die TR1360-Strecke besteht aus 75 Tragwerken, nämlich 30 Abspannmasten und 45 Tragmasten. Für die NISV können diese 75 Tragwerken in 8 Mastfiguren unterteilt werden, bei denen die geometrische Anordnung der Phasen unterschiedlich ist:

Mastbild Typ	Z	V	VI	A1	A2	А3	Α	Т
Mastbild A	A: 11.00 T: 6.8-8.0	9.50	9.00	6.50	10.50	8.00	15	14
Mastbild B	T: 7.12-8.12	10.50	10.00	7.50	10.50	8.50	0	29
Mastbild C	11.00	9.50	9.00	7.00	11.40	8.60	11	0
Mastbild D	11.00	9.50	9.00	8.00	12.50	9.50	2	0
Mastbild E		Mastbild vorhanden im Abschnitt Filisur-Sils						
Mastbild F	11.00	9.50	9.00	8.50	10.50	8.00	1	0
Mastbild G	3.00	9.00	9.00	5.80	9.50	6.80	1	0
Isol. Traverse (Mastbild A)	6.79	9.50	9.00	4.58 (6.50)	4.96 (10.50)	5.28 (8.00)	0	1
Isol. Traverse (Mastbild B)	7.12	10.50	10.00	4.50 (7.50)	4.93 (10.50)	5.32 (8.50)	0	1
Anzahl Tragwerke:						30	45	

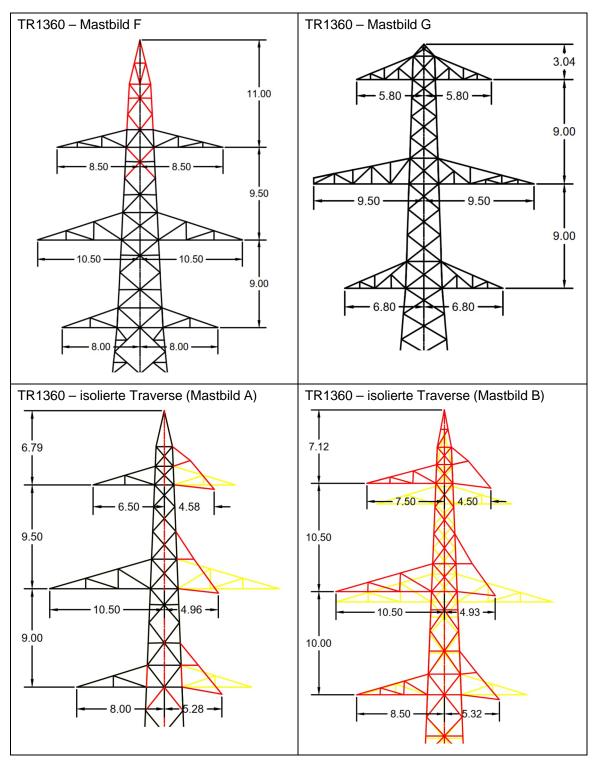


Abbildung 1: Mastbilder für TR1360

Alle Ketten an allen Tragwerken zwischen Nr. 1360x127 und Nr. 1360x202 werden ausgetauscht, um einen sicheren Betrieb mit 380kV zu ermöglichen.

3.2. Leiterseile und massgebender Betriebszustand

Die Trasse TR1360 zwischen Tragwerk 1360x127 und UW Filisur besteht aus zwei Stränge zwischen den Tragwerken 1360x127 und 1360x202: 2x(3x2x600mm2Ad). Die Leiterseile dieser beiden Leitungen bestehen aus 600mm2 Aldrey (Bündelleiter) zwischen den beiden Tragwerken 1360x127 und Tragwerk 1360x202.

Trasse	Nr.	Name	Spannung	Leiterseile Phasen x Seil x Querschnitt / Material	Grenzstrom	Lastfluss
Swissgrid	ST929	Pradella-Sils	380kV	3x2x600mm2 Ad	1830A (Begrenzung)	→ Sils
TR1360	ST638	Filisur-Robbia (Albula)	380kV	3x2x600mm2 Ad	1920A	→ Sils

3.3. Magnetisches Feld (B-Feld)

Wie bereits erwähnt, wurden für den Trasse TR1360 sieben Mastsilhouetten verwendet. Die Magnetfeldberechnungen wurden für diese sieben Mastfiguren durchgeführt und sind in diesem Abschnitt zusammengefasst.

Untersuchungsperimeter

Mithilfe der Software EFC400 wurden die Mastfiguren für die Magnetfeldberechnungen in 2D modelliert. Da die beiden Systeme nicht für denselben massgebenden Grenzstrom berechnet werden, ist es normal, dass die Profile nicht symmetrisch sind.

Legitimationsperimeter

Im Gegensatz zum Untersuchungsperimeter, der aufgrund der beiden unterschiedlichen Stromwerte zwischen den beiden Strängen nicht symmetrisch ist, ist der Legitimationsperimeter symmetrisch. Sein Wert beträgt das Doppelte des grössten Wertes des Untersuchungsperimeters, d. h. 2x den linken Wert.

Magnetfeld Bündelleiter 3x2x600mm2Ad	Untersuchungsperimeter 1µT 1920A / 1830A	Legitimationsperimeter
Mastbild A	-61.5/+58.5m	±123.0m
Mastbild B	-64.5/+61.0m	±129.0m
Mastbild C	-63.5/+60.5m	±127.0m
Mastbild D	-65.5/+62.5m	±131.0m
Mastbild E	Mastbild vorhanden im Abschnitt F	Filisur-Sils
Mastbild F	-62.5/+59.5m	±125.0m
Mastbild G	-58.5/+55.5m	±117.0m
Isol. Traverse (Mastbild A)	-63.0/+50.0m	±126.0m
Isol. Traverse (Mastbild B)	-65.0/+53.0m	±130.0m

Abbildung 2: TR1360 Magnetfeld 2D Berechnung

Projekt: NISV, 2x(3x2x600 Ad), 1920A/1830A, parallel, Mastbild A

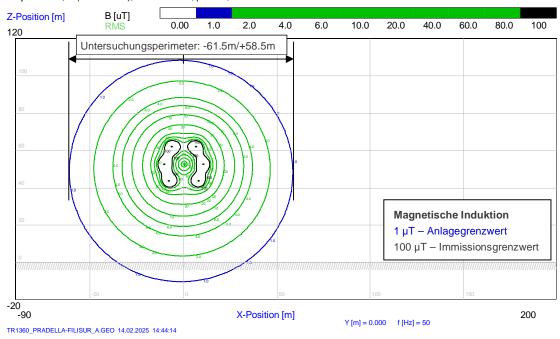


Abbildung 3: TR1360 Magnetfeld 2D Berechnung - Mastbild A

Swissgrid 380kV Pradella-Filisur TR1360

Projekt: NISV, 2x(3x2x600 Ad), 1920A/1830A, parallel, Mastbild B

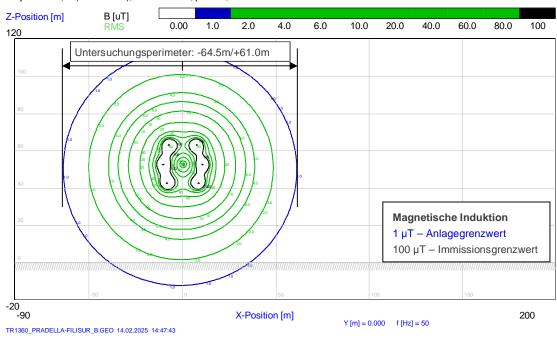


Abbildung 4: TR1360 Magnetfeld 2D Berechnung - Mastbild B

Projekt: NISV, 2x(3x2x600 Ad), 1920A/1830A, parallel, Mastbild C

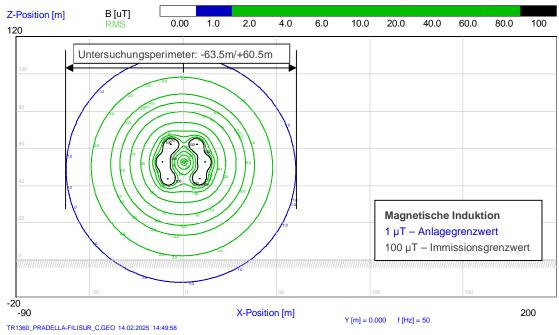


Abbildung 5: TR1360 Magnetfeld 2D Berechnung- Mastbild C

Swissgrid 380kV Pradella-Filisur TR1360

Projekt: NISV, 2x(3x2x600 Ad), 1920A/1830A, parallel, Mastbild D

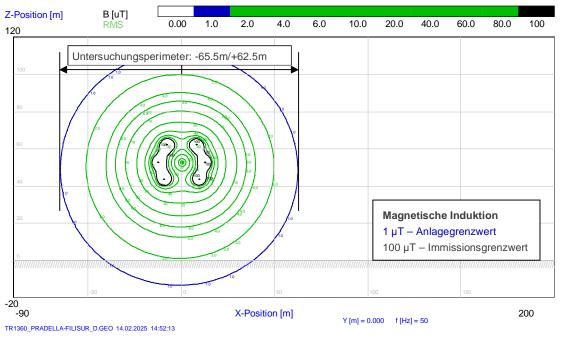


Abbildung 6: TR1360 Magnetfeld 2D Berechnung – Mastbild D

Projekt: NISV, 2x(3x2x600 Ad), 1920A/1830A, parallel, Mastbild F

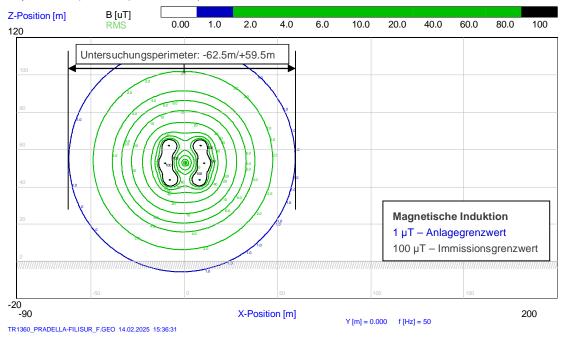


Abbildung 7: TR1360 Magnetfeld 2D Berechnung – Mastbild F

Swissgrid 380kV Pradella-Filisur TR1360

Projekt: NISV, 2x(3x2x600 Ad), 1920A/1830A, parallel, Mastbild G

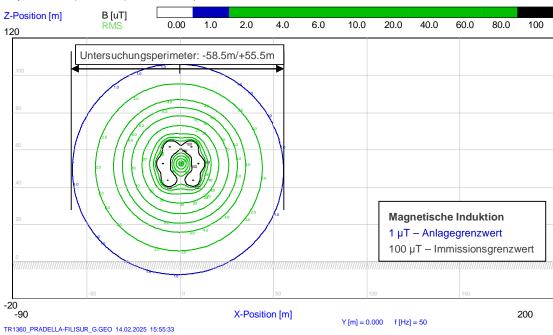


Abbildung 8: TR1360 Magnetfeld 2D Berechnung – Mastbild G

Projekt: NISV, 2x(3x2x600 Ad), 1920A/1830A, parallel, isolierte Traverse (Mastbild A)

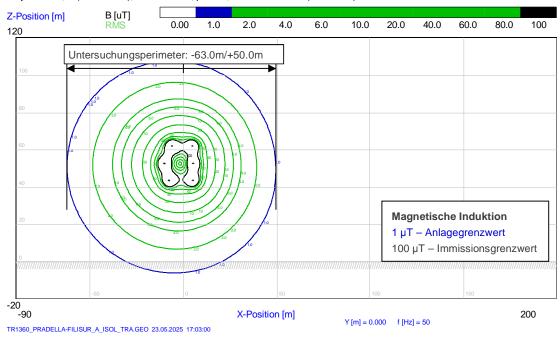
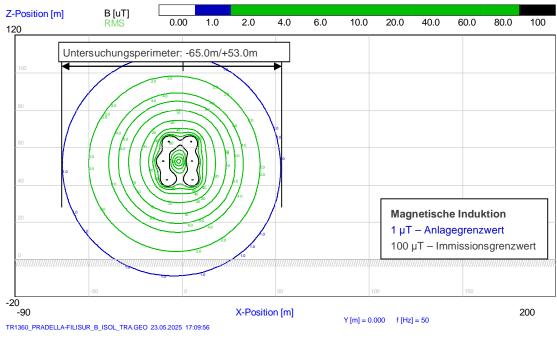
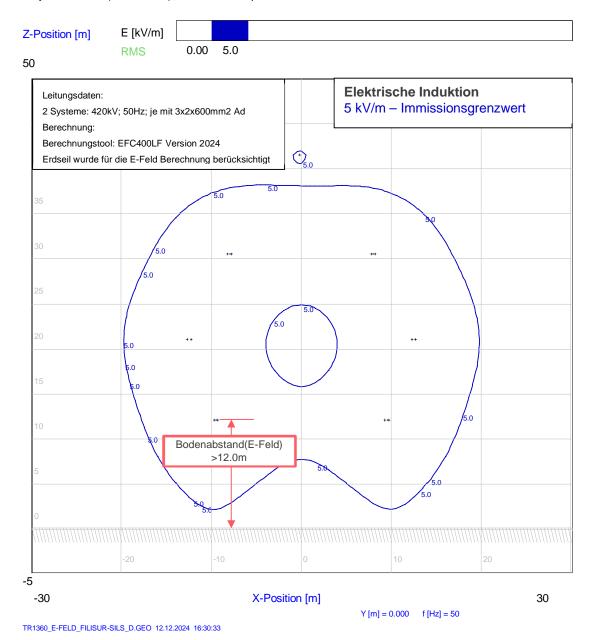


Abbildung 9: TR1360 Magnetfeld 2D Berechnung - Isol. Traverse (Mastbild A)

Swissgrid 380kV Pradella-Filisur TR1360

Projekt: NISV, 2x(3x2x600 Ad), 1920A/1830A, parallel, isolierte Traverse (Mastbild B)




Abbildung 10: TR1360 Magnetfeld 2D Berechnung – Isol. Traverse (Mastbild B)

3.4. Elektrisches Feld (E-Feld)

Swissgrid 380kV Pradella-Filisur TR1360

Projekt: NISV, 2x(3x2x600 Ad), 1920A/1830A, parallel, Mastbild D

E-Feld (höchste Betriebsspannung 420kV) Höhe Leiterseile für E-Feld< 5kV/m, 1 m.ü.B 420kV >12.0m

Abbildung 11: TR1360 Elektrisches Feld 2D Berechnung – Mastbild D (höchste erforderliche Höhe)

In Bezug auf elektrische Felder haben die 2D-Simulationen für jede fünf Mastfigur gezeigt, dass die Immissionsgrenzwerte eingehalten werden (5kV/m bei einer Höhe von 1m), solange die Leiterseile in einer Höhe von mehr als 12m über dem Boden positioniert sind.

Bezüglich des elektrischen Feldes werden die Immissionsgrenzwerte der NISV im Rahmen des Sanierungsprojektes beim Betrieb der TR1360 mit 380kV vollumfänglich eingehalten.

4. Ergebnisse der 3D Berechnungen

Um die NIS-Abklärung zu vervollständigen, wurde der Trasse TR1360 zwischen den Tragwerken 1360x127 und 1360x202 auf das Vorhandensein von Gebäuden im 1 µT-Korridor überprüft. Dies erfolgte in zwei Schritten:

- Der Untersuchungsperimeter von -65.5/+62.5m zur Achse des TR1360 wurde in das GIS integriert, um alle Gebäude innerhalb dieses Korridors zu identifizieren, aufzulisten.
- In einem zweiten Schritt wurden die NIS-Querschnitte mit EFC-400 für beide Leitungskonfigurationen die aktuelle und die mit den neuen Ketten berechnet, um zu überprüfen, ob die Gebäude tatsächlich einer Strahlung von mehr als 1 μT ausgesetzt sind.

4.1. NIS-Abklärung

Der Vollständigkeit halber wurden alle Gebäude nach ihrer GWR-Kategorie für den untersuchten

Abschnitt TR1360 aufgelistet:

		o aargen			
Objekt	Gebäude Amtliche	Nr. AV-Daten	EGID	Gebäudekategorie	Gebäudeklasse
1	55	55	192003229	Gebäude ohne Wohnnutzung	Gebäude mit einer Wohnung Jagd- hütte Albulapass
2	n/a	211.1	502274968	Gebäude ohne Wohnnutzung	Sonstige Hochbauten, anderweitig nicht genannt
3	n/a	210.1	502274969	Gebäude ohne Wohnnutzung	Sonstige Hochbauten, anderweitig nicht genannt
4	n/a	201.4	502274974	Gebäude ohne Wohnnutzung	Landwirtschaftliche Betriebsgebäude
5	150A	201.2	502274976	Gebäude ohne Wohnnutzung	Landwirtschaftliche Betriebsgebäude
6	n/a	201.3	502274975	Gebäude ohne Wohnnutzung	Landwirtschaftliche Betriebsgebäude
7	150	201	502274977	Gebäude mit ausschliesslicher Wohnnutzung	Gebäude mit einer Wohnung
8	142	1	502275003	Gebäude ohne Wohnnutzung	Gebäude des Verkehrs- und Nach- richtenwesens ohne Garagen
9	142-C	3.1	502275458	Gebäude ohne Wohnnutzung	Gebäude des Verkehrs- und Nach- richtenwesens ohne Garagen
10	185	5.1	502275353	Gebäude ohne Wohnnutzung	Sonstige Hochbauten, anderweitig nicht genannt
11	402	5.1	502275317	Gebäude ohne Wohnnutzung	Sonstige Hochbauten, anderweitig nicht genannt
12	403	7.1	502275013	Gebäude ohne Wohnnutzung	Landwirtschaftliche Betriebsgebäude
13	405	9.1	502275011	Gebäude ohne Wohnnutzung	Landwirtschaftliche Betriebsgebäude
14	41A	10.1	502275021	Gebäude ohne Wohnnutzung	Landwirtschaftliche Betriebsgebäude
15	1-7A	6.1	502275009	Gebäude ohne Wohnnutzung	Sonstige Hochbauten, anderweitig nicht genannt
16	1-47-B	4.2	502274941	Gebäude ohne Wohnnutzung	Landwirtschaftliche Betriebsgebäude
17	1-47	4	502274942	Andere Wohngebäude (Wohngebäude mit Nebennutzung)	Gebäude mit einer Wohnung
18	30B	5.1	502274940	Gebäude ohne Wohnnutzung	Landwirtschaftliche Betriebsgebäude
19	n/a	11.1	502274928	Gebäude ohne Wohnnutzung	Sonstige Hochbauten, anderweitig nicht genannt
20	2-37-D	17.1	502274935	Gebäude ohne Wohnnutzung	Sonstige Hochbauten, anderweitig nicht genannt
21	2-37	15	1172843	Andere Wohngebäude (Wohngebäude mit Nebennutzung)	Gebäude mit einer Wohnung
22	3-322	9	502275177	Gebäude ohne Wohnnutzung	Gebäude des Verkehrs- und Nach- richtenwesens ohne Garagen
23	3-319	7	502275170	Gebäude ohne Wohnnutzung	Industriegebäude
24	3-307	15	502275217	Gebäude ohne Wohnnutzung	Industriegebäude

25	n/a	17.1	502275216	Gebäude ohne Wohnnutzung	Sonstige Hochbauten, anderweitig nicht genannt
26	n/a	12.2	502275218	Gebäude ohne Wohnnutzung	Sonstige Hochbauten, anderweitig nicht genannt
27	3-303	13	3076723	Gebäude mit teilweiser Wohnnutzung	Industriegebäude
28	3-305	12.1	502275219	Gebäude ohne Wohnnutzung	Sonstige Hochbauten, anderweitig nicht genannt
29	3-303B	11	191989586	Gebäude ohne Wohnnutzung	Industriegebäude
30	3-301A	8.1	502275213	Gebäude ohne Wohnnutzung	Sonstige Hochbauten, anderweitig nicht genannt
31	3-301B	10.2	502275222	Gebäude ohne Wohnnutzung	Sonstige Hochbauten, anderweitig nicht genannt
32	3-301	8	191805775	Gebäude ohne Wohnnutzung	Industriegebäude
33	3-301B	10.2	502275222	Gebäude ohne Wohnnutzung	Sonstige Hochbauten, anderweitig nicht genannt
34	3-301F	10.3	502275221	Gebäude ohne Wohnnutzung	Sonstige Hochbauten, anderweitig nicht genannt
35	3-301A	10	9023900	Gebäude ohne Wohnnutzung	-
36	3-301E	6	191989560	Gebäude ohne Wohnnutzung	Gebäude für Kultur- und Freizeit- zwecke
37	3-309	4	191783294	Gebäude ohne Wohnnutzung	Industriegebäude
38	3-308	2	191781835	Gebäude ohne Wohnnutzung	Industriegebäude
39	3-315	6.1	502275171	Gebäude ohne Wohnnutzung	Sonstige Hochbauten, anderweitig nicht genannt

Eidg. Gebäude- und Wohnungsregister (GWR): Gebäudestatus (Bundesamt für Statistik BFS)

4.2. Untersuchungsperimeter und Querprofile

Objete	Object FOID	0	Manhahaa	Deeter d NICV	Magnetische Strahlung		
Objekt	EGID	Spannweite	Vorhaben	Bestand NISV	Projekt	Ist	
7	502274977	1360x158-x159	158: A / 159: A	Alte Anlage Leiterseile unverändert	5.9µT (unverändert)	5.9µT	
15	502275009	1360x185-x186	185: TAK / 186: A	Änderung alten Anlage Leiterseile höher	<1µT (ausserhall	o Isolinie)	
17	502274942	1360x186-x187	186: A / 187: T	Änderung alten Anlage Leiterseile höher	2.9µT	3.0µT	
20	502274935	1360x191-x192	191: T / 192: A	Änderung alten Anlage Leiterseile höher	<1µT (ausserhalb Isolinie)		
21	1172843	1360x192-x193	192: A / 193: A	Alte Anlage Leiterseile unverändert	<1µT (ausserhalb Isolinie)		
23	502275170	1360x197-x198	197: A / 198: TAK	Änderung alten Anlage Leiterseile höher	4.1μT	4.2µT	
24	502275217	1360x198-x199	198: TAK / 199: A	Änderung alten Anlage Leiterseile höher	2.1µT	2.1µT	
27	3076723	1360x198-x199	198: TAK / 199: A	Änderung alten Anlage Leiterseile höher	2.7µT	2.7T	
32	191805775	1360x199-x200	199: A / 200: TAK	Änderung alten Anlage Leiterseile höher	1.7µT	1.7µT	
36	191989560	1360x199-x200	199: A / 200: TAK	Änderung alten Anlage Leiterseile höher	<1µT (ausserhall	o Isolinie)	

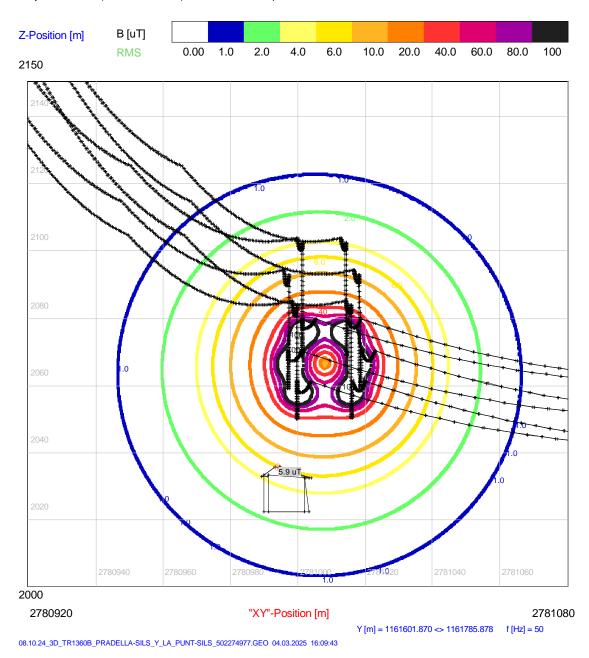


Abbildung 12: TR1360 Querprofile aus der 3D-Modellierung – OMEN (EGID 502274977 - 1360x158-x159) - Projekt

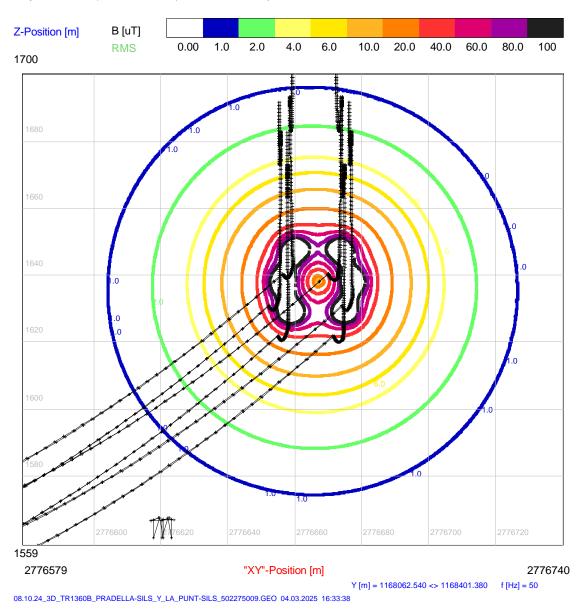


Abbildung 13: TR1360 Querprofile aus der 3D-Modellierung – OMEN (EGID 502275009 - 1360x185-x186) - Projekt

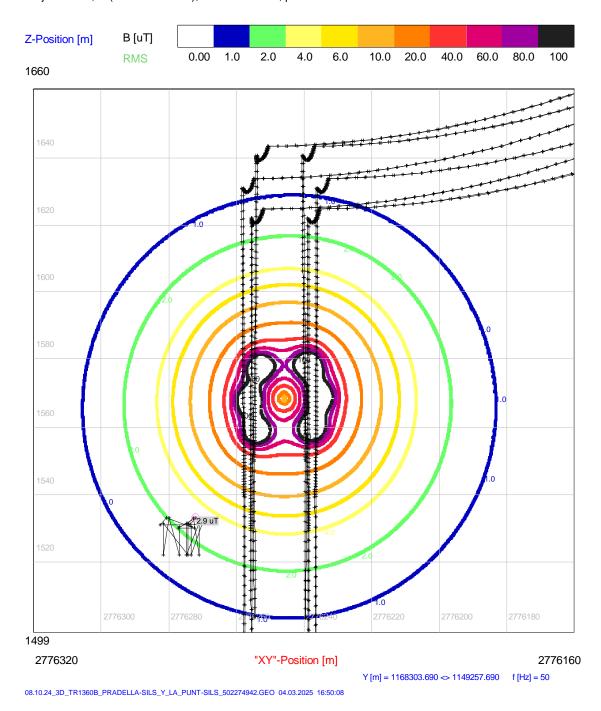
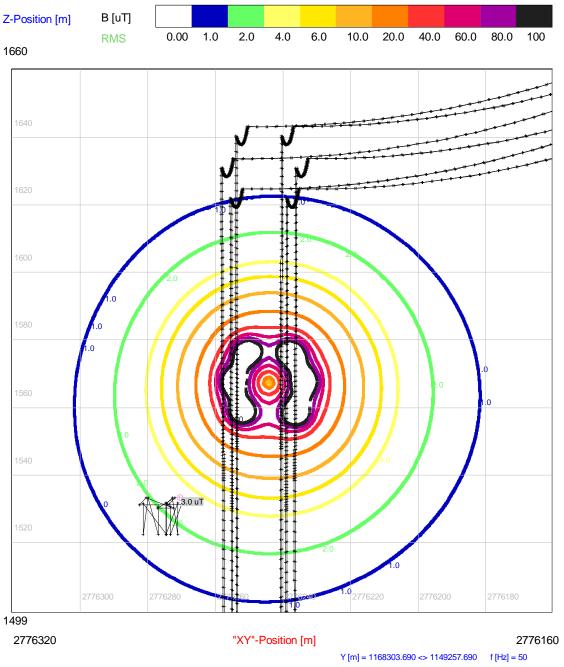



Abbildung 14: TR1360 Querprofile aus der 3D-Modellierung – OMEN (EGID 502274942 - 1360x186-x187) – Projekt-Zustand

Projekt: NISV, 2x(3x2x600mm2Ad), 2x960A/2x915A, parallel, IST

08.10.24_3D_TR1360B_PRADELLA-SILS_Y_LA_PUNT-SILS_502274942_IST.GEO 10.03.2025 15:45:43

Abbildung 15: TR1360 Querprofile aus der 3D-Modellierung – OMEN (EGID 502274942 - 1360x186-x187) – Ist-Zustand

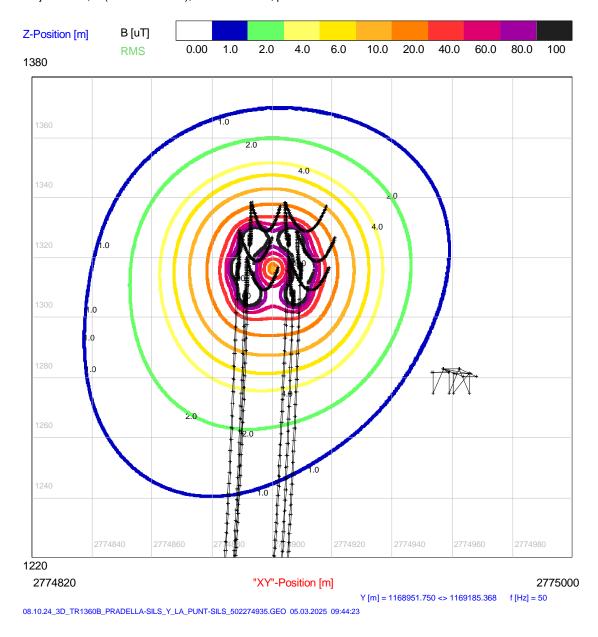


Abbildung 16: TR1360 Querprofile aus der 3D-Modellierung – OMEN (EGID 502274935 - 1360x191-x192) – Projekt-Zustand

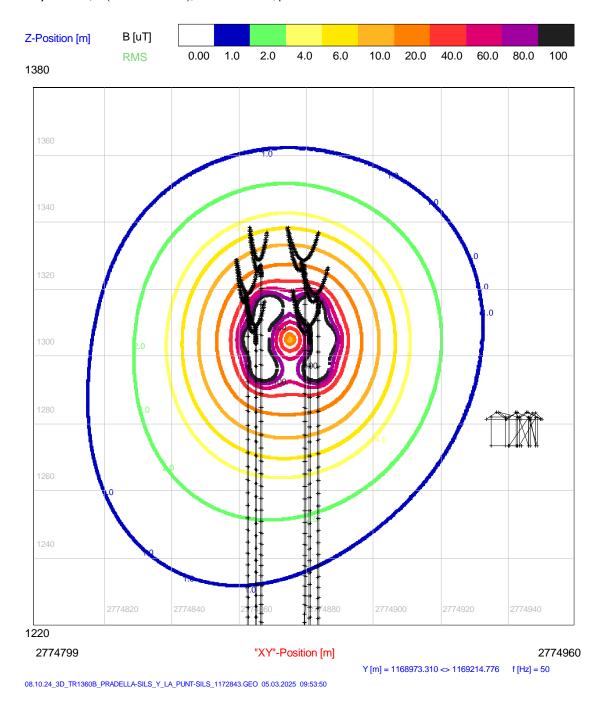


Abbildung 17: TR1360 Querprofile aus der 3D-Modellierung – OMEN (EGID 1172843 - 1360x192-x193) – Projekt-Zustand

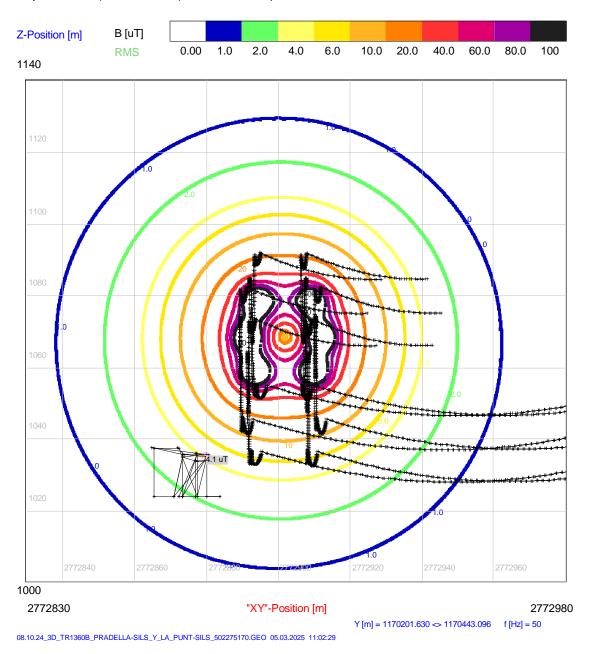


Abbildung 18: TR1360 Querprofile aus der 3D-Modellierung – OMEN (EGID 502275170 - 1360x197-x198) – Projekt-Zustand

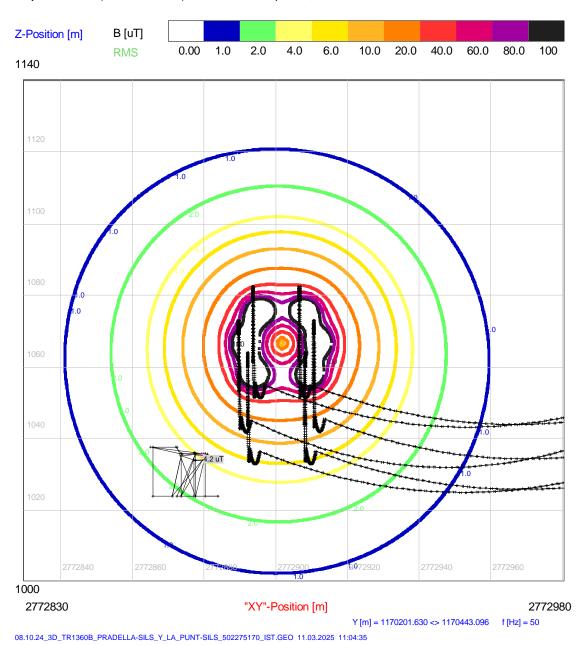


Abbildung 19: TR1360 Querprofile aus der 3D-Modellierung – OMEN (EGID 502275170 - 1360x197-x198) – Ist-Zustand

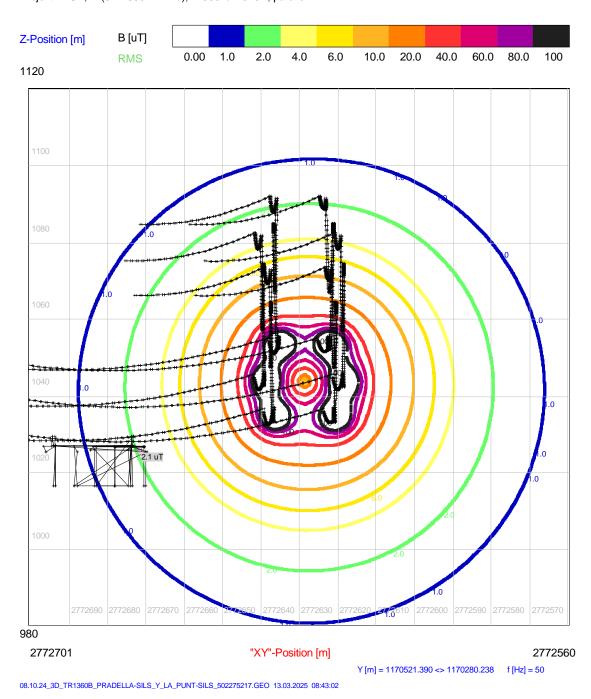


Abbildung 20: TR1360 Querprofile aus der 3D-Modellierung – OMEN (EGID 502275217 - 1360x198-x199) – Projekt-Zustand

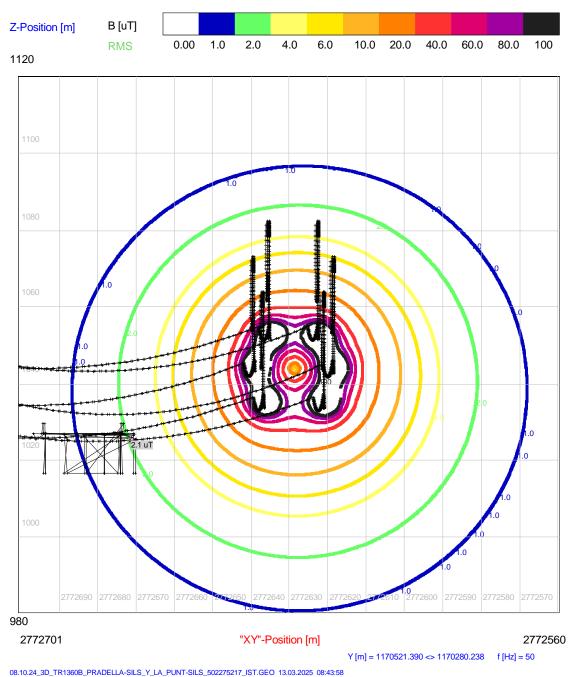


Abbildung 21: TR1360 Querprofile aus der 3D-Modellierung – OMEN (EGID 502275217 - 1360x198-x199) – Ist-Zustand

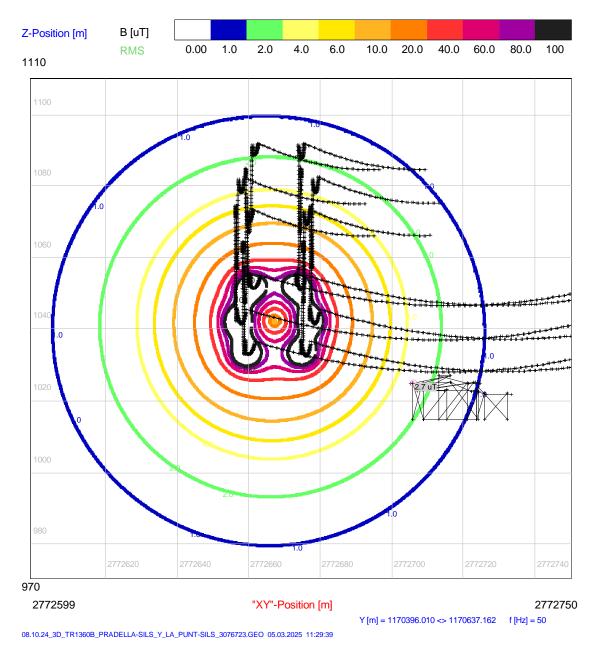


Abbildung 22: TR1360 Querprofile aus der 3D-Modellierung – OMEN (EGID 3076723 - 1360x198-x199) – Projekt-Zustand

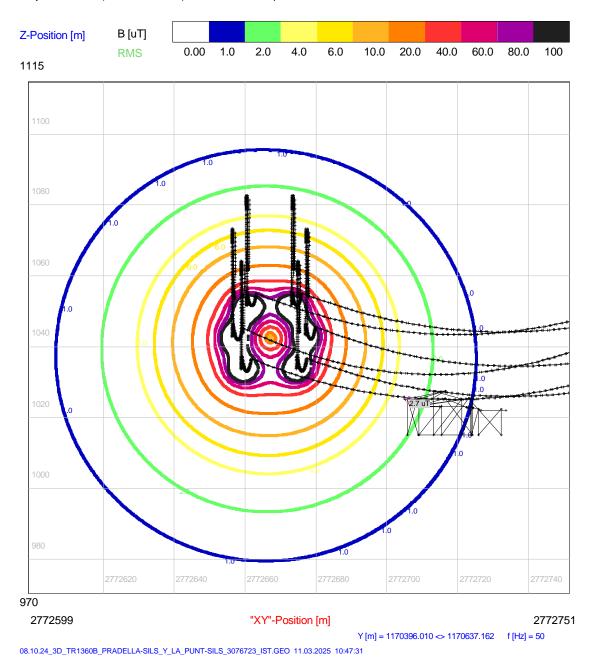


Abbildung 23: TR1360 Querprofile aus der 3D-Modellierung – OMEN (EGID 3076723 - 1360x198-x199) – Ist-Zustand

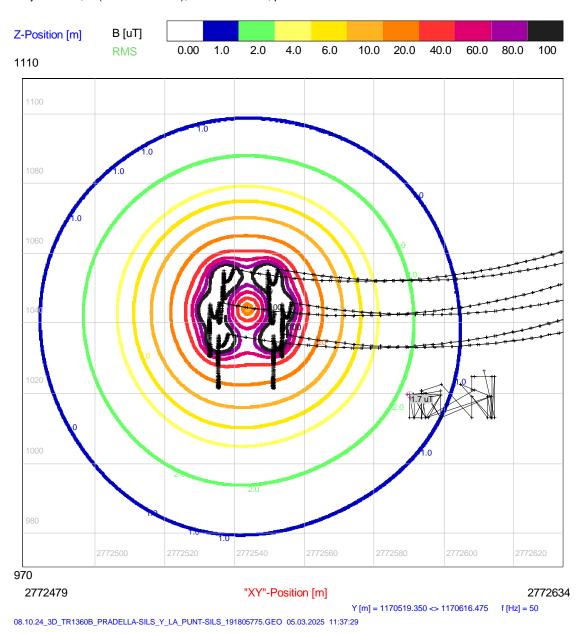


Abbildung 24: TR1360 Querprofile aus der 3D-Modellierung – OMEN (EGID 191805775 - 1360x199-x200) – Projekt-Zustand

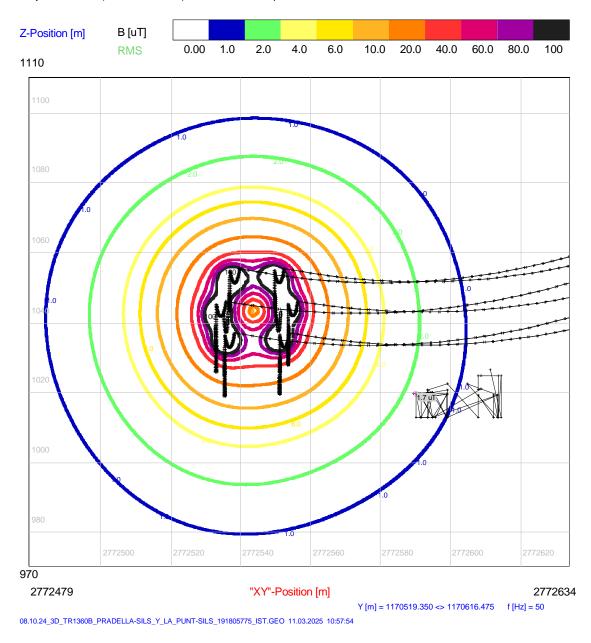


Abbildung 25: TR1360 Querprofile aus der 3D-Modellierung – OMEN (EGID 191805775 - 1360x199-x200) – Ist-Zustand

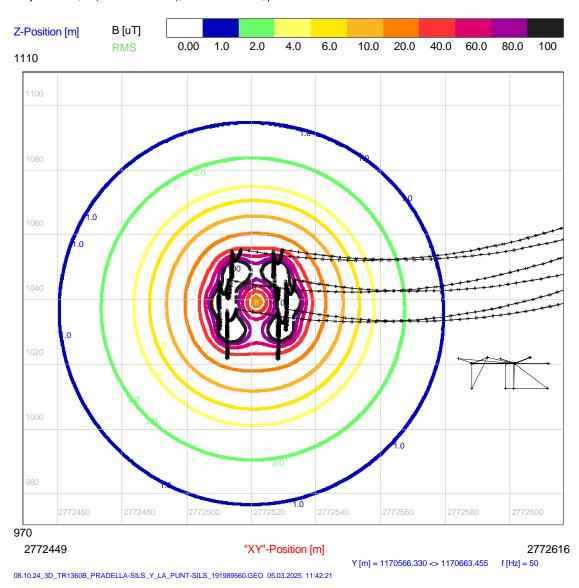


Abbildung 26: TR1360 Querprofile aus der 3D-Modellierung – OMEN (EGID 191989560 - 1360x199-x200) – Projekt-Zustand

5. Schlussfolgerung

Für den Leitungsabschnitt TR1360 zwischen Tragwerk 1360x127 und UW Filisur (Tragwerk 1360x202) zeigt diese Studie, dass sich die Sanierung (Ersatz der bestehenden Ketten durch neue, kürzere Ketten, Tragwerkverstärkungen und Erhöhungen) in der Regel positiv oder neutral auf die NISV-Aspekte auswirkt.

Gemäss Anhang 1, Absatz 12, Ziffer 7, Buchstabe a und b der Verordnung über den Schutz vor nichtionisierender Strahlung gilt das Höherlegen des gleichbleibenden Mastbildes nicht als Änderung einer alten Anlage.

Der geplante Umfang des Vorhabens bewirkt, dass die Leiterseile angehoben werden. Dies hat zur Folge, dass der Schlauch des Magnetfeldes (Isolinien) angehoben wird. Somit ist das vorliegende Projekt gemäss NISV nicht als Änderung einer alten Anlage zu klassifizieren (gemäss Anhang 1, Absatz 12, Ziffer 7).

Die Einhaltung der NISV (SR 814.70) ist für das geplante Vorhaben gemäss den geltenden gesetzlichen Grundlagen erfüllt.

Der Vollständigkeit halber wurden die Untersuchungs- und Legitimationsperimeter auf den Situationsplänen zwischen den Tragwerk 1360x127 und Tragwerk 1360x202) dargestellt.

Die NISV wird mit dem Sanierungsprojekt der TR1360 vollumfänglich eingehalten

B-Feld

Abgesehen von der allgemeinen Feststellung, dass die magnetische Flussdichte an diesen Orten nicht zunimmt, verbleiben jedoch 6 OMEN, die nach der Umsetzung der Sanierungsmassnahmen einer magnetischen Strahlung von mehr als 1µT ausgesetzt sein werden.

E-Feld

In Bezug auf das elektrische Feld werden die Anforderungen der NISV (E-Feld < 5kV/m @ 1m) eingehalten, solange sich die Leiterseile in einer Höhe von mehr als 12m über dem Boden befinden. Dies gilt für die gesamte Strecke zwischen Tragwerk 1360x127 und Tragwerk 1360x202.

Referenzen

- Swisstopo BFS für Gebäude https://map.geo.admin.ch/?topic=ech&lang=de&bgLayer=ch.swisstopo.pixelkarte-farbe&layer=ch.bfs.gebaeude wohnungs register
- Swissgrid Phasenschema TR1360

Certificate Of Completion

Envelope Id: 14FEF7EA-7E57-49F4-80E6-344234FB49A1

Subject: Mit Docusign abschließen: TR1360-FRE-2-11802_NISV.pdf

Source Envelope:

Document Pages: 30 Signatures: 3
Certificate Pages: 2 Initials: 0

AutoNav: Enabled

Envelopeld Stamping: Enabled

Time Zone: (UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

Status: Completed

Envelope Originator: Adrian Brönnimann Parkstrasse 23

Baden, AARGAU CH-5401 Adrian.Broennimann@axpo.com IP Address: 159.168.126.254

Record Tracking

Status: Original

May 27, 2025 | 10:09

Holder: Adrian Brönnimann

Adrian.Broennimann@axpo.com

Location: DocuSign

Signer Events

Adrian Brönnimann

adrian.broennimann@axpo.com

Security Level: Email, Account Authentication

(Optional)

Signature

DocuSigned by:

Udrian Brönnimann —F7619F342FFF430...

Signature Adoption: Pre-selected Style Using IP Address: 159.168.126.254

Timestamp

Sent: May 27, 2025 | 10:10 Viewed: May 27, 2025 | 10:11 Signed: May 27, 2025 | 10:11

Electronic Record and Signature Disclosure:

Not Offered via Docusign

Christophe Doublet

Christophe.Doublet@axpo.com

Security Level: Email, Account Authentication

(Optional)

— Docusigned by: Christophe Doublet

39338A3F1DFA4C4...

Signature Adoption: Pre-selected Style Using IP Address: 104.30.134.225

Sent: May 27, 2025 | 10:10 Viewed: May 27, 2025 | 10:11 Signed: May 27, 2025 | 10:12

Electronic Record and Signature Disclosure:

Not Offered via Docusign

Rafael Szillat

Rafael.a. Szill at @axpo.com

Security Level: Email, Account Authentication

(Optional)

Rafael Szillat

Signature Adoption: Pre-selected Style Using IP Address: 104.30.134.225

Sent: May 27, 2025 | 10:10 Viewed: May 27, 2025 | 10:15 Signed: May 27, 2025 | 10:16

Electronic Record and Signature Disclosure:

Not Offered via Docusign

In Person Signer Events	Signature	Timestamp
Editor Delivery Events	Status	Timestamp
Agent Delivery Events	Status	Timestamp
Intermediary Delivery Events	Status	Timestamp
Certified Delivery Events	Status	Timestamp
Carbon Copy Events	Status	Timestamp

Witness Events	Signature	Timestamp
Notary Events	Signature	Timestamp
Envelope Summary Events	Status	Timestamps
Envelope Sent	Hashed/Encrypted	May 27, 2025 10:10
Certified Delivered	Security Checked	May 27, 2025 10:15
Signing Complete	Security Checked	May 27, 2025 10:16
Completed	Security Checked	May 27, 2025 10:16
Payment Events	Status	Timestamps